Survey & Study on Parking Needs & Utilization in Affordable Housing Developments in the East Bay

By East Bay Housing Organizations (EBHO)

January 2015

Background and Summary

- How does affordable housing reduce vehicle miles travelled (VMT) and carbon emissions when located close to public transit?
- What is the appropriate ratio of affordable housing units to parking spaces?
- How can affordable housing incentivize reduced dependence on cars while still meeting the needs of low-income families, seniors and individuals to get to work, school, shopping, services, and other destinations that are not always close to reliable public transportation?
- How should we plan to meet the parking needs of future affordable housing residents?
- What are the unintended consequences of too few parking spaces?

These are some of the questions that members of East Bay Housing Organizations (EBHO) have been grappling with at a time of increased focus on Transit-Oriented Development (TOD) and the implementation of the groundbreaking California legislation, SB375, to reduce greenhouse gas emissions through a more compact land use pattern. To explore these questions about parking needs, requirements and ratios, EBHO undertook a survey and study of non-profit affordable housing developments in Alameda County.

EBHO believes in the aggressive implementation of SB 375 and that it should not come at the expense of low-income communities and communities of color. In fact, EBHO urges that the most effective outcomes of this legislation and changing land use patterns will occur if equity and meeting community needs are a top priority. While reducing parking requirements are an important mechanism to incentivize affordable housing, save cost, encourage transit ridership, and reduce VMTs, we want to avoid unintentionally creating greater burdens on low-income residents of affordable housing properties or the surrounding neighborhoods.

What we found: A ratio of between approximately .7 spaces per unit and 1 space per unit is ideal to minimize both unused space and overflow. The lower end of the range is better suited for the senior properties and the higher end of the range is better suited for the family properties. Demand for parking is impacted by many factors, and to some extent is influenced by the available supply of parking. However, too little parking can also create problems such as tensions in the surrounding neighborhood if there is too much overflow parking.
Survey & Methodology

Data for this survey was compiled for between three and five affordable housing properties each from eight different non-profit affordable housing developers\(^1\) for a total of 35 properties surveyed. Properties were chosen by EBHO members with the intent of capturing the diverse types of affordable housing in the East Bay, as well as the different needs of those respective types.

Selected developments are as follows, organized by location:

Berkeley

- Erna P. Harris Court (35 units, 7 spaces allocated to residents, built 1994, renovated 2011)
- Helios Corner (80 units, 17 spaces allocated to residents, built 2007)
- Mabel Howard (40 units, 6 spaces allocated to residents, built 2000)

Castro Valley

- Strobridge Court Apartments (96 units, 102 spaces allocated to residents, built 1998)

Dublin

- Camelia Place (112 units, 168 spaces allocated to residents, built 2007)

Emeryville

- Avalon (67 units, 23 spaces allocated to residents, built 2000)
- Emeryvilla Apartments (49 units, 72 spaces allocated to residents, built 1992)

Fremont

- Cottonwood Place (98 units, 45 spaces allocated to residents, built 2012)
- Main Street Village (64 units, 54 spaces allocated to residents, built 2011)
- Pickering Place (43 units, 86 spaces allocated to residents, built 1997)

Hayward

- Hayward Senior Homes (60 units, 32 spaces allocated to residents, built 2008)
- Sara Conner Court (57 units, 78 spaces allocated to residents, built 2006)

\(^1\) Non-profit developers surveyed include: Resources for Community Development (RCD), East Bay Asian Local Development Corporation (EBALDC), Eden Housing, Christian Church Homes (CCH), EAH Housing, MidPen Housing, BRIDGE Housing, and Satellite Affordable Housing Associates.
To first get a sense of parking usage, we collected data on the number of units, the number of parking spaces built, and the number of cars that residents had registered with the property. We collected this data through interviews conducted by phone or email with developers and/or property managers. This would ideally provide us with an accurate representation of parking usage. By taking the total spaces built and subtracting cars registered by residents, we were hoping to determine how many spaces were going unused.

However, we quickly realized that these numbers were not telling the entire story. Property managers were offering anecdotal evidence to qualify the numbers they were providing, and so we began to ask additional clarifying questions when conducting interviews in order to more accurately determine the extent to which the parking at these developments is utilized. These questions pertained to how the parking spaces were/are allotted, the presence (and length) of a waitlist, and any site-specific issues or policies that could affect parking usage. This was unequivocally the most meaningful way of determining the actual parking usage at each site, and provided insight into how relying solely on numerical data to determine usage presents complications. The numerical data simply could not provide us with an accurate representation of parking usage. We found that at every site, there existed circumstances that obscured the total number of cars owned by residents. Ultimately, we gathered complete numeric and qualitative data on twenty-six of the properties.
Findings

Here are our preliminary findings from the twenty-six properties:

The data that we collect suggests that as the ratio of spaces per unit increases, it becomes more likely that parking spaces will go unused. The data similarly suggests that with lower space to unit ratios, it is more likely that these developments will experience parking overflow.

In the above chart, the properties are ordered by the number of spaces available to residents per unit (blue bars), ascending from left to right. The red bars represent demand, measured as the number of known cars owned by residents per unit. This chart implies that a ratio of between approximately .7 spaces per unit and 1 space per unit is ideal to minimize both unused space and overflow. The properties that have fewer than .7 spaces per unit tend to have more cars than spaces, meaning that residents are parking offsite. Properties with more than one space per unit tend to have fewer cars than spaces, resulting in unused parking lot space. Properties that have between .7 spaces per unit and one space per unit tend to have a number of cars that aligns closely with the number of spaces available.

The most noticeable exception is St. Joseph’s Senior Apts., which has over .8 spaces per unit, but has a demand of only .2 cars per unit. This is a senior housing project consisting of one bedroom apartments and studios, and the property managed explained that only a small percentage of residents own cars. We were not able to determine the factors causing this variation.
The above charts show the relationship between supply and demand, selecting for senior and family properties. The same overall trend still exists, where demand tends to exceed supply below .7 spaces per unit, but tends to be less than the supply above 1 space per unit. This initially led us to believe that .7 – 1 spaces per unit would be the ideal parking ratio for affordable housing developments; building parking in this range would minimize unused parking and wasted costs and also prevent lots from overflowing.

We also examined parking spaces per bedroom, rather than unit, and found a similar range (.3 – .7 spaces per bedroom) where parking supply adequately matched the demand (below chart). At properties with fewer than .3 spaces per bedroom, demand exceeded supply, while properties with more than .7 units per bedroom had unused parking space. These findings reinforce the idea that if too little parking is built, properties will experience overflow, but if too much is built, some will go unutilized. Properties as listed as “Name (number of bedrooms).”
One of the variables that we assumed would affect the number of cars at a property was proximity to public transportation options. Below is a chart depicting the parking supply and demand, with properties organized from left to right by transit proximity (first by distance to BART, then by distance to a bus line). Properties are listed as “Name (City, distance to BART in miles, distance to a bus line).”

The chart was also created using bus line proximity first, then BART proximity:
Neither chart shows a correlation between proximity to transit and the parking supply per unit at a property. This is possibly because each property surveyed is located with .2 miles of a BART station or bus line. If this survey were to be replicated with developments located further from transit it would be possible for a correlation to take shape.

Perhaps the most important takeaway of this data is that, while there appear to exist ranges where parking space is not maximized and does not cause overflow, there is no consistent range of parking demand. If there truly were a range of parking spaces to units where developers could build to match demand, then that range should be seen in the demand across the board, regardless of the supply. More specifically, we would always see the demand as being between .7 and 1 spaces per unit, while supply would fluctuate above and below those values. Instead, we see that the supply and demand stay closer together. We cannot draw any concrete conclusions from the data collected, but the implication could be that demand for parking is somewhat influenced by the supply.

The anecdotal data provided the greatest insight into what variables can affect parking usage. These variables would be much harder to quantify, but they proved far more useful in understanding the factors that shape usage. The following are examples of noteworthy factors, discovered through interviews with developers and property managers that influence usage.

Management Policies:

Some properties have overflow problems not due to space constraints but due to management policies. For example, at Station Center (MidPen) in Union City each unit is assigned one parking space. If they do not use that space, it sits empty. If another unit has more than one vehicle, they cannot park it in spaces left vacant by other units without cars, they must park offsite. The result is that those second vehicles must be parked offsite.

Similarly, at the Bridgecourt Apartments (EAH) in Emeryville there exist three buildings, each with an associated parking structure. Units with multiple cars can fill spaces left vacant by units with no cars, but only within the same building’s parking structure. There is one large building that is currently at capacity and two smaller buildings with higher student populations that are underutilized. For a while staff was parking in the smaller garages to free up space in the larger garage but this is no longer necessary. If the amount of vehicles increases, however, they will be forced to do this again or start a waitlist.

www.ebho.org
High frequency of visitors:

This is especially common at senior housing facilities. From Carole Suazo at the John Stewart Company: "One aspect, if I may add here, is that -with seniors- often times they need parking spaces for family members who either visit or drop them off or sometimes even work for them running errands and transporting them to doctor's appointments and so on. Same case for chore workers who would need a parking space. What I am saying is that visitors’ spaces are useful to consider in housing for seniors. And definitely more parking spaces than the 6 to 40 ratio. Nowadays seniors tend to age better and remain driving for longer than perhaps in the past. That’s my observation during my 6 years working with this population in the Bay Area."

It also occurs at other facilities. At Camelia Place (EAH) in Dublin, the onsite parking is basically at capacity (or slightly underutilized) during the week, but on the weekends visitors take up any vacant spots and overflow to offsite parking. They do not keep track of the extent to which this happens.

Vehicles are uninsured or do not have an up-to-date registration:

Many properties surveyed do not allow cars to park if they are not insured, if the registration is not up to date, or in some cases, such as at Merritt Crossing (SAHA), if they are not registered to a resident whose name is on the lease. For this reason, there might be cars that would overflow and take up offsite parking, while leaving onsite parking underutilized. Most properties surveyed do not keep track of the number of these overflow vehicles, so it is impossible to know the extent to which this type of overflow occurs. Often times they are unaware of any cars that are uninsured, but this doesn't mean that they do not exist.

Structural limitations:

Garage lifts that are designed to save space and cannot accommodate larger vehicles (Maddison Street Lofts, Oakland - SAHA)

Some residents simply prefer to park on the street even though there is available onsite parking (Main Street Village, Fremont - MidPen)

Conclusions

The survey data for the 26 properties indicates that range of .7 spaces per unit and 1 space per unit is ideal to minimize both unused space and overflow. The parking demand at senior properties tended to trend toward the lower end of the range and the parking demand at family properties tended to trend to the higher end of the range. Multiple factors influence the demand for parking, including the available supply of parking spaces on the property and in the surrounding area.

Reducing parking is a critical policy advocacy strategy to incentivize affordable housing and TOD. While we want to encourage decreased dependence on cars and increased transit ridership among affordable housing residents, we also want to avoid unintended consequences. It is critical that low-income residents are able to meet their household’s transportation needs without limiting their choices and opportunities as they travel to work, to school, to friends and family, and to essential services and amenities, as well as to receive visitors. It is also
important to avoid “NIMBY” (Not-In-My-Backyard) problems that are created by residents parking in the surrounding neighborhood. We do not want neighborhood overflow issues to be a source of opposition to new affordable housing developments.

At the same time, building and providing parking is expensive. Reducing the amount of parking spaces can save on costs to the affordable housing development. Furthermore, land in TOD areas is at a premium and should not be wasted or underutilized.

Finally, while more study is needed given the complexities and variables involved in parking demand/supply ratios, this study gives a snapshot of where we are today in Alameda County. Our conclusions can provide guidance to our members and coalition partners in the current policy debates about affordable housing and TOD, and as we continue to urge further investment in affordable housing and affordable reliable public transportation.

Who is East Bay Housing Organizations (EBHO)

East Bay Housing Organizations (EBHO) is the leading affordable housing advocacy coalition serving Alameda and Contra Costa Counties through its mission to preserve, protect and expand affordable housing opportunities through education, advocacy, organizing and coalition building. This dynamic 30-year old non-profit membership organization includes nearly 400 organizations and community leaders advocating for affordable housing development and favorable housing policies for the lowest income constituencies at the local and regional level. EBHO’s broad-based membership includes non-profit affordable housing developers, architects, planners, contractors, homeless and housing advocates, service providers, fair housing agencies, tenant advocates, community and interfaith organizations and activists, clergy and congregations, labor unions, environmental organizations, lending institutions, intermediaries and policy organizations, and city and county agencies and staff.

Acknowledgements:

We want to thank Resources for Community Development (RCD), East Bay Asian Local Development Corporation (EBALDC), Eden Housing, Christian Church Homes (CCH), EAH Housing, MidPen Housing, BRIDGE Housing, and Satellite Affordable Housing Associates for providing EBHO with data on parking needs and utilization for several of their properties in Alameda County.

We want to thank Sam LaTronica, former EBHO staff member, for compiling and analyzing the data and preparing the report.

For more information, please see www.ebho.org or contact us at staff@ebho.org or 510-663-3830.

East Bay Housing Organizations (EBHO)
538 9th Street, Suite 200
Oakland, CA 94607